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Summary

The Tor hidden services (henceforth, HS) classification process was performed in

six steps:

Compiled a bootstrap list of HS to be automatically crawled by extracting the

HS list provided by onion.city and ahmia.fi.

1. 

Ran custom Python-based crawling script utilizing a Tor SOCKS connection to

harvest textual information from HTTP-based HS. Each HS was harvested for

up to 100 pages. Links to additional HS were also extracted from the harvested

materials. The script ran for a total of five weeks.

2. 

Used random page sampling to construct diverse training corpus for the3. 
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classification algorithm.

Trained and tested the algorithm, tweaked parameters, categories and feature

extraction until results were consistently reliable (>95% precision and recall).

4. 

Ran classification on document corpus, analyzed results.5. 

Manually tested classified pages to observe accuracy of classification.6. 

Data-Scraping Process

The initial seed list of HS was assembled by harvesting public .onion repositories.

Two websites proved useful to the task – http://ahmia.fi and http://onion.city,

both of which allow connecting to .onion sites not through Tor (effectively

insecurely bridging the gap between HS and the conventional internet).  The

assembled list was especially diverse as the above sites do not filter sites, except

 for outrageously illicit content (primarily child pornography). For example,

ahmia.fi filters 58 out of 5286 hidden services as of January 19, 2016.

We started out with constructing the crawler. The Tor crawler was a relatively

simple script coded in Python. The design included a persistency mechanism to

keep a detailed account of HS sites that were crawled, with results stored in a

MongoDB instance. The requests themselves were piped into the Tor network

through a combination of Privoxy and Tor SOCKS connections. HS which did not
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properly respond to connection attempts were retried during each iteration to

alleviate temporary connectivity issues.

Various extensions which were deemed as irrelevant to textual content were

excluded from scanning. This included executables, archives and media formats

(audio, video, images), as well as assorted miscellaneous formats (e.g. .bin).  These

files and links were immediately discarded and did not count towards the per-HS

crawl limitation.

The crawling process took five weeks, during which it ran continuously. We ended

the crawling when the rate of new pages generated was continuously near-zero.

Websites which – at the end of the process – did not respond to requests were

auto-assigned the ‘None’ category. This proved to be very common: over 1,000

websites were entirely non-responsive.

The webpages themselves were subjected to a sanitisation process designed to

extract textual content. This process entailed stripping away HTML tags, invisible

text (e.g. comments), embedded media, and Javascript. The extracted text was

submitted to the langid Python language classification library, the results of which

were used to Google-Translate non-English content. Google Translate may often

poorly translate entire sentences for reading by human eyes. But its output still
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yields acceptable translations on a word-by-word basis, which makes it suitable

for automatic text classification.

The normalized text was hashed and introduced into the MongoDB instance, if it

was new. If we had already seen the hash before, a reference to it would be stored

instead. This ensured that we would not be counting multiple classifications of the

exact same page for a given website. Content could certainly be copied between

websites and still be counted.

Preparing the Classifier

I searched for a best-fit algorithm that would yield distinct category classification

without significant loss in accuracy or recall. This proved difficult as Tor darknet

content was highly varied and often polluted with textual artifacts (textual

elements irrelevant to the content). Naïve Bayes and K-Nearest Neighbours, two

common classification algorithms, did not yield satisfactory results, but likely

could have if tinkered with sufficiently. After several bouts of trial and error, I

settled on the scikit-learn Python library’s implementation of multiclass Support

Vector Machines (SVM).

SVM is a common text classification algorithm frequently used in text
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classification problems. To properly use it, the following requirements must be

met:

Select and configure a feature extractor. Features are the fundamental

data-building blocks assessed by the algorithm. In text-classification

problems, these are often words.

1. 

Select categories. These must be sufficiently distinct and representative in

order for classification to enjoy high precision/recall rates.

2. 

Construct a training corpus comprised of sufficient samples per category. The

training corpus is a collection of documents which have been pre-emptively

identified as belonging to a given category.

3. 

Train the classifier with the corpus and note the results. The classifier can

create a training-testing split in the training corpus that allows it to assess its

own accuracy. The two main parameters used to assess said accuracy are

precision and recall.

Precision – Out of the X documents assigned category Y, how many were in

fact category Y?

a. 

Recall – Out of the X documents that were in fact category Y, how many

were assigned category Y?

b. 

4. 

I used a TfidfVectorizer for the feature extractor, which essentially corresponded to
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my use of words as the primary data block. I experimented heavily with categories

that would generate a reliable fit to the data. Initially, I attempted to categorize

based on behaviour (criminal marketplaces, illicit wikis), but the results were

inconsistent. The resulting taxonomy was a blend of behavioural (e.g. social) and

topical (e.g. drugs) classifications, providing a decent fit for variations in Tor HS

content. The vast majority of categories were thematic, as this resulted in more

distinct terminology and textual patterns per category.

In order to generate the training corpus I wrote a second script which randomly

sampled the MongoDB instance and displayed the results. Pages were manually

assigned categories by me, based on the predominant theme. A primary guiding

principle was benefit of the doubt – if I couldn’t reliably determine the nature of a

page, I would assign it the Other category. Other safeguards were in place to

ensure variation in the training corpus, such as a low limit on the amount of pages

I classified per HS. The resulting corpus was comprised of 634 documents.

Interestingly enough, the ‘None’ category was a distinct category which had

documents assigned to its training corpus. This is because I included within this

category placeholder pages such as blog templates and default Apache (HTTP

server) responses. These were surprisingly more common than initially assumed,

with more than 1,000 websites found with placeholder content. Based on this, it
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seems that many individuals choose to host HS within the Tor darknet but do not

follow up on the actual generation of content.

The training corpus was used to generate two classifiers:

A content classifier – based on the textual content of web pages.1. 

A title classifier – based on the HTML titles extracted from each page. These

were often indicative of the website’s content.

2. 

Classification

The classification logic worked as follows:

The two SVM classifiers were run on each document and categories assigned.

For each website, I classified up to 100 web pages (with both classifiers), to

ensure that ‘misrepresenting’ pages were not predominantly determining the

website’s category. For example, if a website chiefly dedicates to arms trade

had several pages on fraudulent money transfers, it could influence the overall

classification of the site. But if the classifier analysed 100 pages and only 4 of

these were dedicated to financial activity, the correct category would still

prevail in the overall category assignment for the entire site.
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If a page had less than 50 words, it was assigned the ‘none’ category.

An aggregate classifier category determination was made only if over 50% of

the pages were assigned to a single category.

An overall website category determination was made only if both title and

content classifiers agreed on the category.

If both classifiers could not internally agree on a category, the script assigned

the website the ‘Unknown/Unclear’ category.

If each classifier could not agree on a category between them, the script

flagged the website for manual review and category classification.

The crawler collected 239,000 unique pages from 5,205 sites, out of which 50,000

were used for classification. Post-classification, I again randomly sampled 50

distinct websites from different categories to review their classification. Aside for

two cases in which the social category was assigned to forums focused on

exchanging information on the manufacturing of narcotics, the categories

assigned were correct.

Detailed results are in our full article.
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Cryptopolitik and the Darknet →

Disagree?

In the sprit of our argument, we welcome discussion -- ideally self-identified, but you

may have good reasons not to self-identify. Enter your email only if you want a response

notification. Debate hosted on a Raspberry Pi somewhere in London. Please read before

commenting.

Be polite
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